Немецкие ученые применили ИИ для сжатия данных синхронизированных векторных измерений
Разработанные методы снизить потребности в памяти для архивирования до 80%.
Расширение использования ВИЭ ведет к увеличению нагрузки на электрические сети, особенно в динамических зонах. Для обнаружения критической динамики традиционные измерения больше не достаточны, поэтому все чаще они дополняются синхронизированными векторными измерениями (СВИ), которые позволяют в режиме реального времени контролировать частоту, напряжение и фазовый угол, делая до 50 выборок в секунду. Из-за такого частоты выборки за один день может быть получено множество гигабайт данных. Для решения этой проблемы ученые из Fraunhofer IOSB разработали методы сжатия, которые могут значительно — до 80% — снизить потребность в памяти для архивирования и ускорить последующий анализ данных.
Андре КуммеровFraunhofer IOSBМы должны иметь возможность автоматически обрабатывать, сжимать и оценивать до 4,3 миллиона записей в день. Наши подходы к обнаружению ошибок, соответственно, сложны, и поэтому мы используем методы, основанные на ИИ.
Далее СВИ могут использоваться для обнаружения отклонений от нормальной работы сети (аномалий) и для выявления определенных неисправностей в режиме реального времени. В этом случае методы ИИ используются для автоматической оценки измеренных значений. [renen.ru, iosb.fraunhofer.de]
Фото в анонсе: Fraunhofer IOSB.