www.sprecher-automation.com

DIGITAL SUBSTATION: EXPERIENCES WITH A SUBSTATION AUTOMATION AND PROTECTION SYSTEM BASED ON IEC61850 9-2 PROCESS BUS

Stephan Hutterer, Sprecher Automation GmbH

Statnett sprecher

OVERVIEW PROCESS BUSS - GENERAL

- Remove hard-wiring on field-level
- NCIT (non-conventional instrument transformers) feed data to process bus
- Merging Units: Integrate Conventional Equipment

OVERVIEW PROCESS BUS - GENERAL

OVERVIEW DSAS PILOT

- Statnett: Digital Substation Pilot Project in a live 300kV Substation
 - Tender: Early 2016
 - Project: 10/2016 (Specification) 10/2017 (Installation and Commissioning)
- Stakeholders: Statnett (Operator) + Jacobsen Elektro & Sprecher Automation (Vendor + Integrator)

• Goal:

- Gather practical experiences with DS technologies
- Evaluate Interoperability
- Gain knowledge on how to create future DS using process bus advantages

OVERVIEW DSAS PILOT

Station Bus with Gateway and HMI

Distance Protection for Lines 1&2 + Bay Control Units. Line1: SAMU + CIT, Line2: MU+NCIT

Distance Protection for Lines 1&2 + Bay Control Units. Line1: MU+NCIT Line2: SAMU + CIT

Distance Protection for Lines 1&2 + Bay Control Units Line1: MU+NCIT Line2: SAMU + CIT

CYBERSECURITY CONCEPT

DSAS PILOT FUNCTIONAL SETUP

Multiple Measurement / Command Chains

- For validating NCIT vs. CT/VT
- For creating redundancy

DSAS FUNCTIONAL SETUP

DSAS PILOT COMMUNICATION

TECHNICAL CHALLENGES: AVAILABILITY

- Functional Redundancy: Parallel Command Chains (shown before)
- Network Redundancy: How to protect against network failures?
 - PRP for seamless redundancy

TECHNICAL CHALLENGES

Time Synchronization: Sub-Microsecond

- Merging units need to be synchronized
- Additional synchronization between merging and protection units
- PTP Power Profile (IEC 61850-9-3)
- PTP needs to be compatible for all devices

Bandwidth

- GB-Ethernet needed! (4kHz sampling rate)
- Testing doubles the bandwith consumption

CONCLUSION

- DSAS Pilot in live 300kV substation
 - Evaluate multiple combinations of CIT/NCIT technology with various vendors
 - Experience achievable advantages through DS / process bus
 - Realize pilot within one year
- Technical Challenges
 - Time Synchronization: PTP
 - Availability
 - Network redundancy with PRP
 - Redundant command chains
 - Bandwidth
 - Gigabit-Ethernet needed
 - Using VLANs for Process Bus / GOOSE
 - Vendor Lock-In MU/NCIT
 - Cybersecurity
 - Testing

Thank you for your attention!

